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A novel modification of the classical Langhaar linearization of the mutually coupled
momentum equations for developing two-phase flows in circular ducts is presented.
This modification enables us to treat: (i) flows developing from spatially periodic
initial velocity distributions without the presence of droplets, and (ii) two-phase
flows in which monosize, non-evaporating and evaporating droplets suspended in a
developing gas flow of an initially uniform velocity distribution exchange momentum
with the host-gas flow. New solutions are presented for the downstream evolution in
the velocity profiles which develop from spatially periodic initial velocity distributions
that eventually reach the fully developed Poiseuille velocity profile. These solutions
are validated by employing known numerical procedures, providing strong support
for the physical underpinnings of the present modified linearization. New solutions
are also presented for the evolution in drop velocities and vapour spatial distributions
for evaporating droplets suspended in an initially uniform velocity profile of the host
gas. Asymptotic solutions are presented for the flow region which lies very close to
the inlet of the tube, where the relative velocity between the droplets and the host
gas is high, and thus the velocity fields of the two phases are mutually coupled. These
solutions provide new explicit formulae for the droplet velocity field as a function
of the initial conditions and droplet diameter (relative to the tube diameter) for
non-evaporating drops, and also as a function of evaporation rate for evaporating
drops.

1. Introduction
In many applications of practical interest, evaporating drops are being transported

by gas flows and thus the two-phase flow fields become mutually coupled. Hence, the
study of evaporating drops suspended in various flow fields has been of continued
interest in fluid mechanics research, e.g. Katoshevski & Tambour (1993, 1995), Miller
& Bellan (1999), Leboissetier, Okong’o & Bellan (2005), Le Clercq & Bellan (2005).
In research on the combustion of liquid fuel droplets and sprays, it is important to
analyse the dynamics of the evaporating drops and the spread of fuel vapours by the
gaseous flow field, e.g. Borghi (1996), Candel et al. (1999), Laurent & Massot (2001),
Laurent et al. (2004), Meng et al. (2005), Réveillon & Vervisch (2005), Nakamura
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et al. (2005), Laurent (2006). The above problems are usually addressed by employing
numerical solutions. Parallel to these efforts, analytical solutions have also been sought
(Silverman, Greenberg & Tambour 1991; Tambour & Katoshevski 1994; Tambour
1995). These asymptotic (Silverman et al. 1991; Tambour & Katoshevski 1995)
and other analytical solutions (Tambour & Katoshevski 1994; Anidjar, Greenberg &
Tambour 1996) provide a relatively comfortable tool for gaining physical insight when
analysing evaporating droplets suspended in gaseous flow fields and spray flames,
and have the advantage of serving as a reference for the validation of numerical
solutions (e.g. Khosid & Tambour 1993). Comprehensive asymptotic studies were
also conducted by Schonberg & Hinch (1989) and Asmolov (1999) for analysing the
lift forces acting on particles suspended in two-dimensional fully developed channel
flows between two parallel plates.

The investigation of flows in ducts is important in its own right since it serves a
large variety of traditional engineering disciplines such as biomechanics, aerospace
and chemical engineering, in which circular and non-circular ducts are employed
for instrumentation, heating and cooling devices, and the transportation of liquids
and gases with and without droplets and solid particles. For example, the migration
of solid particles in Poiseuille flows has been of continued interest since the Segré
& Silberberg (1962) classical discovery that single rigid neutrally buoyant spheres
migrate to an equilibrium position located at pipe radius r = 0.6. Recently, Matas
et al. (2004a) and Matas, Morris & Guazzelli (2004b) extended this classical study to
include the effects of the flow Reynolds number. The study of suspended evaporating
sprays in developing flows in ducts is also of importance when analysing miniature
combustion chambers, e.g. Chigier & Gemci (2002). In this regard, it is important to
define the operating conditions under which the droplets fully vaporize at short
distances in a developing flow in a tube, providing vapours for the miniature
combustion chamber. In addition, the theoretical analysis of the behaviour of laminar
spatially periodic gaseous flow fields may also provide insight into flames in turbulent
flow fields. The reasoning behind the above observation lies in the well-known
structure of turbulent flows which is characterized by a wide range of spatial–
temporal scales and their associated motion which can be visualized as a cascade of
eddies.

Based on the above-described behaviour of turbulent flow fields, Sivashinsky (1988)
and later Berestycki & Sivashinsky (1991) successfully applied the cascade concept
to large-scale turbulent premixed flames by modelling the flow field as a one-scale
unidirectional spatially periodic flow field. Adopting Sivashinsky’s approach, further
understanding of the structure and response of premixed flames in a spatially periodic
time-independent flow field was gained in a more recent study by Yu, Sung & Law
(1994).

In combustion systems utilizing liquid fuels, the liquid is generally in the form of
a spray. Greenberg & Cohen (1992) showed that spatially non-uniform distributions
of droplet concentration and velocity can lead to asymmetrically distorted spray
diffusion flames.

All the above-mentioned studies indicate the paramount importance of studying
spatially periodic flows and the behaviour of evaporating sprays suspended in gaseous
flow fields. Undertaking the latter study is the main goal of present paper. In the
first part we will focus on laminar unidirectional spatially periodic time-independent
developing gaseous flows in a circular duct. Then, flows developing from initially
uniform velocities laden with non-evaporating and evaporating droplets will be
analysed.
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Figure 1. Schematic description of developing laminar flow in a circular duct: (a) gaseous
flow of an initially spatially periodic velocity profile, (b) uniform initial velocity profile with
initially monosize evaporating droplets. Note that the droplets are introduced into the tube at
a velocity higher (or lower) than the host gas velocity.

A comprehensive review of the analytical work associated with flows in ducts
was presented by Shah & London (1978). This excellent review covers almost 530
papers and represents the state of the art in 1978. Since then, dozens of papers
have been published in that area. A literature survey that we carried out indicates
that Langhaar’s linearization is a very useful tool for treating developing flows in
ducts since it allows one to solve the axial flow momentum equation analytically. It
leads to satisfactory results when solving for the velocity profiles that develop from
an initially uniform velocity distribution at the duct entrance. However, Langhaar’s
linearization is limited to treating initially uniform velocity distributions only, and
to flow systems which do not contain droplets suspended in the flow field, whereas
here we will treat spatially periodic initial velocity profiles and initially uniform flows
laden with nonevaporating and evaporating drops.

The flow system under consideration is presented in figure 1. Detailed formulations
of the governing equations for a developing flow in a duct and the explanation of
Langhaar’s linearization can be found in the literature, e.g. see Langhaar (1942),
Shah & London (1978) and Ward-Smith (1980). Note that in order to linearize the
momentum equation and solve it analytically, Langhaar (1942) introduced function
γ , which is a function of axial position only. Then, the function γ was determined
from the momentum equation evaluated at the centreline and from a momentum
integral equation. The pressure drop was calculated separately from a mechanical
energy integral equation.
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Since our purpose is to treat (a) flows developing from initially spatially periodic
velocity profiles, and (b) a developing initially uniform gaseous duct flow that
exchanges momentum with droplets suspended in the flow field, we propose modifying
Langhaar’s linearization. Our modification will include a new function f and a velocity
ubound whereby a non-uniform initial velocity profile may be treated. The function f

will be determined by using a mechanical-energy equation. The velocity ubound is the
velocity of the flow along the boundary between the decelerated and the accelerated
zones of the developing flow. This modified linearization will also be employed here to
analyse the behaviour of non-evaporating and evaporating monosize sprays which are
suspended in an initially uniform developing duct flow. The mathematical treatment
is presented below.

2. Flow developing from a non-uniform initial velocity profile in a circular duct
The governing equations for a steady-state incompressible developing flow in a duct

(see figure 1) may be written (in a non-dimensional form) as
momentum

Du

Dt
= u

∂u

∂x
+ v

∂u

∂r
= −dp

dx
+

1

r

∂

∂r

(
r
∂u

∂r

)
, (2.1)

continuity

∂u

∂x
+

1

r

∂(rv)

∂r
= 0, (2.2)

where the non-dimensional variables are defined as

u =
u∗

ū
, v =

v∗a

ν
, x =

x∗ν

ūa2
, r =

r∗

a
p =

p∗

ρū2
, t =

t∗a2

ν
.

Here u∗ and v∗ are the axial and radial velocity components of the fluid, ū is the
mean value of u∗, x∗ and r∗ are the axial and radial coordinates, p∗ is the pressure of
the fluid, a is the radius of the duct, ρ is the fluid density, ν is the kinematic viscosity
of the fluid, and t∗ is the time.

In order to solve the momentum equation analytically, Langhaar (1942) suggested
the following linearization:

Du

Dt
= −dp

dx
+

1

r

∂

∂r

(
r
∂u

∂r

)
= γ 2u (2.3)

whose solution

u = BI0(γ r) + C (2.4)

leads to satisfactory results when solving for velocity profiles that develop from an
initially uniform velocity distribution at the duct entrance. In the above, I0 is the
zeroth-order Bessel function, γ is a function of x, and C is a constant.

The above solution must satisfy the no-slip and the non-permeability boundary
conditions

ur=1 = vr=1 = 0 (2.5)

and also the continuity integral equation

∫ 1

0

rudr =
1

2
. (2.6)



Developing flow with droplets in a tube 249

Employing (2.5) and (2.6), equation (2.4) yields the classical Langhaar’s velocity
profile

uL =
I0(γ ) − I0(γ r)

I2(γ )
(2.7)

which develops from a uniform profile u = 1, obtained by substituting γ = ∞ (which
corresponds to the initial station x = 0) into (2.7), to the fully developed profile
u = 2(1 − r2), for γ = 0. Note, however, that there is no γ for which uL can represent
a non-uniform initial velocity profile, e.g. a spatially periodic profile. Thus, Langhaar’s
linearization is limited to treating only initially uniform velocity distributions, and as
will be demonstrated later, even for an initially uniform velocity profile, if a liquid
spray is suspended in the flow, one cannot obtain analytic solutions for the velocity
field of the droplets that exchange momentum with the host-gas flow with the aid
of Langhaar’s linearization (and therefore one must resort to some other kind of
linearization). Thus, it is the purpose of the present study to present a new form of
linearization, which is a modification of Langhaar’s linearization, in order to overcome
the above-described shortcomings.

For flows which start from a non-uniform initial velocity profile (or in two-phase
flows in which liquid droplets exchange momentum with the host-gas flow) we propose
here a modification to (2.3) of the form

Du

Dt
= −dp

dx
+

1

r

∂

∂r

(
r
∂u

∂r

)
= γ 2(u − ubound) (2.8)

where ubound is a function of γ and r and its functional form will be determined later.
A solution for (2.8) must satisfy the no-slip and the non-permeability boundary

conditions (2.5) and also the continuity integral equation (2.6).
Now, let the initial velocity profile be non-uniform (but symmetrical in r), that is

u(x = 0, r) = 1 + ξ (r) (2.9)

where ∫ 1

0

rξ (r) dr = 0 (2.10)

and

ξ (−r) = ξ (r). (2.11)

We propose a new solution for the developing profile u of the form

u = [1 + f ξ (1)]uL + f [ξ (r) − ξ (1)] (2.12)

to be a solution of (2.8).
In the above uL is the Langhaar profile (2.7) and f (x) (or f (γ )) is an unknown

function of x (or γ ) to be sought. Since at x = 0 (where uL = 1) equation (2.12) must
reduce to the form of (2.9), the initial condition for f is

f (x = 0, i.e. γ → ∞) = 1. (2.13)

At the other edge for x → ∞ our solution must approach the fully developed profile
which is represented here by uL and hence the function f must satisfy

f (x → ∞, i.e. γ → 0) = 0. (2.14)
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Next, since we require the pressure to be a function of x only, ubound may be
expressed as

ubound(γ, r) = u(γ, rbound) + f (γ )[ϕ(γ, r) − ϕ(γ, rbound)] (2.15)

where

ϕ(γ, r) = ξ (r) − 1

γ 2

1

r

∂

∂r

(
r
∂ξ (r)

∂r

)
(2.16)

and the radial position rbound(γ ) is found from the condition

∂u

∂γ
|rbound

= 0. (2.17)

Note that as the flow approaches its fully developed profile (i.e. as γ → 0, then
u → uL, and thus employing (2.7)), one obtains

lim
γ →0

rbound =
1√
3

≈ 0.58. (2.18)

In the above, rbound is a boundary between the accelerated and the decelerated
zones of the flow, and its final value 0.58 (see equation (2.18)) is very close to
the value r = 0.6 where neutrally buoyant particles concentrate after the entrance
region of a tube, as was first documented by Segré & Silberberg (1962) in their
classical experiment. This analysis also agrees with Soo’s assertion (Soo 1990) that
the ‘maximum concentration (of particles) occurs where the velocity gradient is least’.

The unknown function f will be evaluated below, but first we have to determine
the axial pressure drop.

3. Determination of the axial pressure drop
To obtain the variation of the unknown function γ with the axial distance x:dx/dγ ,

Langhaar eliminated the pressure drop dp/dx by comparing two equations. The first
was the momentum equation (2.1) which was applied to the axis of symmetry (the
centreline), where the radial velocity vc and the radial derivative of the axial velocity
∂uc/∂r are both equal zero (i.e. vc = 0 and ∂uc/∂r = 0):

uc

duc

dx
= −dp

dx
+

(
1

r

∂

∂r

(
r
∂u

∂r

))
c

. (3.1)

Then, a second equation was obtained by Langhaar by integrating the momentum
equation (2.1) over the duct cross-section

d

dx

(∫ 1

0

ru2dr

)
= −1

2

dp

dx
+

(
∂u

∂r

)
r=1

. (3.2)

Comparing the terms that equate dp/dx in one equation to those in the other
equation, dp/dx was eliminated and a functional form for dx/dγ was obtained by
Langhaar. For the purpose of determining the pressure drop, Langhaar used the
mechanical-energy equation, which is equivalent to the integral method (see Sparrow,
Lin & Lundgren 1964), since the mechanical-energy equation was constructed by
multiplying the momentum equation (2.1) by the velocity u and integrating over the
duct cross-section. By means of the continuity equation (2.2), the boundary condition
(2.5) and the continuity integral equation (2.6), the mechanical-energy equation reduces
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to

d

dx

(∫ 1

0

r
u3

2
dr

)
= −1

2

dp

dx
−

∫ 1

0

r

(
∂u

∂r

)2

dr. (3.3)

The pressure drop that was determined by Langhaar employing the above equation
was in good agreement with the results of other investigations (e.g. see Sparrow et al.
1964; Campbell & Slattery 1963). We have summarized Langhaar’s procedure here
to enable comparison with our forthcoming procedure.

From the formal point of view, the pressure may be determined from either
the momentum equation evaluated at the centreline (3.1) or from the momentum
integral equation (3.2). In this regard, note that since the analytical solution (2.12)
for the velocity u is the solution of a linearized equation and not the original, then
substituting the solution for u in the above-mentioned accurate equations leads to
various results for the pressure drop dp/dx, which slightly differ from each other.
For example, in the case of a concentric annular duct (which is relevant to, but not,
the case studied here) Shumway & McEligot (1971) showed that the pressure drop
found by Heaton, Reynolds & Kays (1964), which was obtained using Langhaar’s
momentum integral equation, differed by 20% for x � 10−3 from the results based on
the mechanical-energy integral equation. However, this inconsistency does not detract
from the value of Langhaar’s classical solution, since for an initially uniform velocity
profile Langhaar still has (after carrying out his linearization) two unknowns γ (or
dx/dγ ) and (dp/dx), so he employs (3.1) and (3.2) to determine dx/dγ and finally
obtains a satisfactory result for dp/dx by employing the mechanical-energy equation
(3.3).

However in our case, for a non-uniform initial velocity profile, we have three
unknowns: dx

dγ
, dp

dx
and ubound(γ, r) (or the unknown function f (γ )). Hence, to use

simultaneously all three auxiliary equations, namely the momentum equation at the
centreline (3.1), the momentum integral equation (3.2) and the mechanical-energy
equation (3.3) would require adjusting the pressure term so that the final results
would be the same irrespective of what combination of the three auxiliary equations
one uses.

Note that the pressure gradient term may be regarded as consisting of two parts:
a constant part which is the pressure gradient for a fully developed Poiseuille flow,
and a variable part which describes the deviation from the fully developed pressure
gradient. In order to obtain the same results with the use of any combination of the
three foregoing auxiliary equations, we introduce here a weight factor k(γ ) to the
variable part of the pressure gradient. Doing this, we keep in mind that the velocity
profile u(γ, r) presented by (2.12) is a solution of the linearized equation (2.8) and
not of the original momentum equation (2.1). Thus, the weight factor k(γ ) makes
the results for the pressure gradient consistent when solving each of these auxiliary
equations, so that the solution of each auxiliary equation reaches the fully developed
Poiseuille flow at the same axial distance.

The weight factor k(γ ) may be found as follows. As mentioned above we divide
the pressure gradient into two parts: a constant part and a variable part, i.e.

dp

dx
=

(
dp

dx

)
const

+ k(γ )

(
dp

dx

)
var

. (3.4)

The constant part of the pressure gradient (dp/dx)const may be found from the
momentum equation (2.1) for the Poiseuille fully developed velocity profile
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Figure 2. Weight factor k(γ ) for the variable part of the pressure drop (see equation (3.6)).

u∞ = 2(1 − r2) as follows:(
dp

dx

)
const

=
1

r

∂

∂r

(
r
∂u∞

∂r

)
= −8. (3.5)

Now we employ equation (3.4) in the centreline momentum equation (3.1) and the
momentum integral equation (3.2).

The weight factor k(γ ) may be found after some rearrangements of (3.1)–(3.5) as

k= (
4 + ( ∂u

∂r

)
r=1

)uc
duc

dγ
−

(
8 +

(
1
r

∂
∂r

(
r ∂u

∂r

))
c

)
d
dγ

∫ 1

0
ru2dr(

4 −
∫ 1

0
r
(

∂u
∂r

)2
dr

)(
uc

duc

dγ
− 2 d

dγ

∫ 1

0
ru2dr

)
+

(
2
(

∂u
∂r

)
r=1

−
(

1
r

∂
∂r

(r ∂u
∂r

))
c

)
d
dγ

∫ 1

0
r u3

2
dr

.

(3.6)

The behaviour of the factor k(γ ) is presented in figure 2. Note that (dp/dx)var ,
which represents the deviation of the local gradient from the fully developed pressure
gradient, gradually decreases as the axial distance increases and finally vanishes on
reaching the fully developed velocity profile, but the value of the factor k slightly
increases, from the initial value k = 6

5
(= 1.2) (for γ → ∞) up to its final value

k = 40
27

(≈ 1.48) (for γ → 0). Thus, the higher values of k multiply values of (dp/dx)var

that are approaching zero.
The boundary between the accelerated and the decelerated zones of the developing

flow is shown in figure 3. The accelerated zone corresponds to the centre core of the
flow whereas the decelerated zone lies near the wall of a tube. Along this boundary
between the decelerating and accelerating zones, the flow does not accelerate, and thus
this boundary should be at the radial locations at which neutrally buoyant particles
tend to concentrate. This argument is based on Soo’s assertion (Soo 1990) that the
‘maximum concentration (of particles) occurs where the velocity gradient is least’,
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and is also supported by the following qualitative comparison with experimental
results: Segré & Silberberg (1962) (see figure 8 on p. 152 in their paper) show the
concentration of particles at various radial positions as the flow develops. The general
behaviour of their results qualitatively corresponds to what we show in figure 3. The
velocity ubound is evaluated along this boundary.

4. Evaluation of the unknown function f (γ ): analysis and discussion of gaseous
flow fields

To find the unknown function f (γ ), we use the momentum equation at the centreline
in the form of (3.1), the momentum integral equation (3.2) and the mechanical-energy
equation (3.3).

Combining equations (3.1) and (3.2) we obtain the derivative dx/dγ as

dx

dγ
=

d

dγ

(
2

∫ 1

0

ru2dr − u2
c

2

)

2

(
∂u

∂r

)
r=1

−
(

1

r

∂

∂r

(
r
∂u

∂r

))
r=0

. (4.1)

The other form of the derivative dx/dγ is obtained via combining (3.1) and (3.3)
(and employing 3.4):

dx

dγ
=

d

dγ

(
u2

c

2
− k

∫ 1

0

ru3dr

)
(

1
r

∂

∂r

((
r
∂u

∂r

))
r=0

+ 2k

∫ 1

0

r

((
∂u

∂r

))2

dr − 8(k − 1)

. (4.2)
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Then, by comparing equations (4.1) and (4.2), the derivative dx/dγ is eliminated
and finally by substituting the velocity u from (2.12) and the weight factor k from
(3.6) we obtain an equation for the function f (note that the function f appears
implicitly in u, see 2.12):

df

dγ
= F (γ, f ) (4.3)

which is solved here numerically, satisfying the initial condition (2.13), for various
spatially periodic initial velocity profiles.

Figure 4 shows the evolution of the axial velocity profiles u, calculated from
equations (2.12) and (4.3), for a non-uniform initial profile u(0, r) = 1 + ξ (r) (see
(2.9)), where

ξ (r) = bcos(4πr). (4.4)

The value of γ at the inlet section of a tube is infinite. Thus, in order to obtain a
starting point for our calculations the following asymptotic profile was used:

uL(γ � 1) ≈
(

1 +
2

γ

)
(1 − eγ (r−1)) (4.5)

which is correct for large values of γ .
Substituting (2.12) with (4.5) into equation (4.3) and neglecting infinitesimal terms

of the second order, we obtain asymptotic relations for functions f (γ ) and x(γ ) for
large values of γ in the form

f (γ � 1) = 1 − kf (b)

γ
(4.6)

and

x(γ � 1) =
kx(b)

γ 2
, (4.7)

where the constant coefficients kf (b) and kx(b) depend on the amplitude b (see (4.4)).
Taking into account that the axial position x must be positive, we obtain from (4.7)

an allowable range for values of b:

−0.71 < b < 0.18. (4.8)

The above closed forms of the above coefficients were obtained with the aid of
Mathematica, the system for symbolic calculations (Wolfram 1991).

Setting a certain large initial numerical value for γ , we obtain an initial value for
the function f (γ ) employing (4.6) and then the process of calculation starts.

Next, the relationship between x and γ may be found from (4.1) or (4.2), and the
pressure gradient dp/dx can be found by employing (3.3).

The radial velocity component v may be obtained from the continuity equation
(2.2) using the following formula (Ulrichson & Schmitz 1965):

v = −1

r

d

dγ

( ∫ r

0

rudr

)/(
dx

dγ

)
. (4.9)

The downstream evolution of the velocity profiles is presented in figure 4 at the
following downstream locations: x = 0.0025; 0.01; 0.04; 0.16 (note that γ is related to
the downstream distance x through equation (4.1)) for various initial profiles defined
by different b values: b = 0.12; 0.07; −0.18; −0.37, see cases (a), (b), (c) and (d),
respectively, where each b represents the wave-shape amplitude. Note that the initial
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Figure 4. Downstream evolution of the developing velocity profiles for four different initial
conditions of a gaseous flow in a circular tube: (a) b = 0.12, (b) b = 0.07, (c) b = −0.18, (d)
b = −0.37. Note that the initial velocity profiles in (a) and (b) are characterized by a velocity
peak in the centre of the tube, whereas in cases (c) and (d) the initial velocity peaks are off
the tube centre.
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velocity profiles (a) and (b) are characterized by a velocity peak in the centre of the
tube, whereas in cases (c) and (d), the initial velocity peak is off the tube centre.

One can see, as expected, that for spatially periodic initial velocity distributions the
influence of fast and slow zones of the flow is counterbalanced owing to their
interaction. When the amplitude b approaches small values, e.g. b = 0.07, the
downstream profiles already resemble the profiles that evolve from a uniform initial
velocity distribution. Langhaar’s results are fully reproduced when we substitute b = 0
in our solution.

In order to validate our solutions for the host-gas flow, we employed the
Nekhamkina & Rotinjan (1978) numerical code. This code was constructed to solve
viscous boundary-layer equations of a single phase, e.g. air without droplets, in which
the pressure is assumed constant in the lateral direction, and is capable of handling
an initial non-uniform velocity profile. This code is based on an approach suggested
by Patankar & Spalding (1967), when a stream function is introduced and the system
of nonlinear finite-differences equations is solved by iterations. This numerical code
was tested by comparison of its results with other numerical solutions (Hornbeck
1964; Liu 1974; see also Shah & London 1978, Table 10). The difference between
results was less than 0.5%.

The term ‘validation’ is usually reserved for the process of ensuring that the
equations solved describe the physical reality, i.e. agreement with experimental
observations. However, since we have linearized the original governing equations
which for decades have agreed with the observed physical reality of viscous flows,
we should check whether our linearization of the original equations still captures the
physical reality.

In this regard, as can be seen in figure 4, the velocity profiles that evolve from
the four different spatially periodic initial velocities not only conserve the qualitative
physical behaviour but also quantitatively show that the deviations of our analytical
solution of the linearized equations from the numerical solution of the original viscous
flow equations are minor (about 1%) for most radial positions along the tube flow
field and reach a maximum of about 4% deviation at some local peaks of the flow
velocity where the linearized equations tend to relax these peaks somewhat faster
than the original equations. This behaviour is expected since this is usual for local
linearization of nonlinear terms. Thus, the present validation provides strong support
for the physical underpinning of our modified linearization procedure.

Figure 5 shows that the velocities at the centreline for different initial profiles
become almost the same after a short distance x ≈ 0.02. Therefore, all such profiles
approach the Poiseuille fully developed profile at downstream distances which are
very close to each other. Note that in Langhaar’s solution, the Poiseuille developed
flow is obtained when γ → 0, i.e. when x → ∞. However for γ ≈ 0.7 (and x ≈ 0.227)
the maximal velocity of the present ‘developed flow’ deviates by less than 1% from
Poiseuille’s maximum velocity.

In the new solutions presented here, we employ the function f (x) (or f (γ )). It
is interesting to observe the behaviour of the function f for various b values (b
defines the amplitude of the spatially periodic initial profile), as presented in figure
6. Note, that when the function f reaches zero, the velocity profile turns into the
classical Langhaar’s profile, see equation (2.12). This happens at small γ values which
are equivalent to large x values. This relationship between the axial position x and
Langhaar’s function γ is shown in figure 7 for various b values, and is almost identical
for each profile which initially has a spatially periodic shape.
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Figure 5. Velocity at the centreline of the tube for various values of b (b defines the form
and the amplitude of the initial spatially periodic velocity profile).
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Figure 6. Auxiliary function f (γ ) for various b values.

Figure 8 shows the influence of the initial profile on the non-dimensional pressure
drop in the downstream direction. In the fully developed flow region, the pressure
gradient approaches a constant value (see equation (3.5)), and the pressure drop
between the inlet section and the downstream locations rises linearly. However, the
pressure gradient in the developing flow region near the inlet is steeper than that in
the fully developed flow, so an excess pressure drop is formed. This pressure drop at
the entrance region, sometimes called the ‘Hagenbach factor’, is of great interest in
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Figure 7. The relationship between the axial position x and Langhaar’s function γ for
various b values.
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Figure 8. The relationship between the normalized pressure drop p and the downstream
distance x from the tube inlet for various b values.

classical fluid mechanics. Langhaar (1942), Sparrow et al. (1964) and other authors
widely discussed this issue for a uniform initial velocity profile and revealed two
distinct contributions, made by: (i) the change in momentum and energy between
the initial and the developing velocity profiles; (ii) the large frictional losses of the
developing flow relative to the Poiseuille flow. The final value of the first contribution
shows the pressure drop necessary to accelerate a flow into a fully developed Poiseuille
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profile, and is equal 2
3

when the initial velocity profile is uniform. However, for a non-

uniform initial profile (equation (4.4)), this becomes ( 2
3

− b2). Hence, a symmetrical
spatially periodic velocity profile like those described by equation (4.4) with a larger
amplitude requires less force and energy to be accelerated into a fully developed
profile than a more uniform initial profile. Thus, as is shown in figure 8, the lines
related to the larger b values lie below those for smaller b values.

In the next sections, the velocity fields of non-evaporating and evaporating droplets
will be analysed. Since the gas-phase velocity and the droplets velocity field are
mutually coupled our modified linearization will be employed for the momentum
equation of each of the phases, namely the host-gas phase and the liquid phase
(droplets).

5. Non-evaporating droplets suspended in a developing initially uniform flow
We begin by analysing a monosize population of non-evaporating liquid droplets

(or particles). Droplets that are introduced into the moving gas initially have a velocity
which differs from the velocity of the host gas. During the motion of the droplets,
their velocity gradually approaches the velocity of the host gas, due to drag forces.
The drag force considered in the present study is proportional to the relative velocity
(u − ud) in the case of a negligible radial velocity component, as will be discussed
below (see also Tambour & Zehavi 1993).

The droplet flow field may be divided into two regions. The first region lies very
close to the inlet of a tube where the relative velocity between the two phases is high
and hence the droplet velocity changes fast. At the second region, droplets have a
velocity that is close to the velocity of the host gas, and these two velocity fields
gradually approach each other. We assume that in the second region, droplets move
almost with the streamlines of the host gas in a tube.

First we analyse here the initial stage of droplet motion. Because of inertia, the
droplet trajectories do not coincide with the streamlines of the host fluid and ‘the
substantial derivatives’ for droplets and the host gas will be different.

The dimensionless governing equations of motion which are mutually coupled are
host-gas flow

Du

Dt
= −dp

dx
+

1

r

∂

∂r

(
r
∂u

∂r

)
+ Kε(ud − u), (5.1)

droplets

Dud

Dt
= K(u − ud), (5.2)

where u is the host-gas flow velocity, ud is the velocity of droplets, ρ = ρd/ρf is
the relative density of droplets and the host fluid, K = 18a2/(ρd2) is the droplet
drag coefficient, a is the radius of the tube, d is a droplet diameter, and ε is mass
concentration of the liquid phase (i.e. droplets). Note that the kinematic viscosity does
not appear in K since it is embedded in the normalized radial velocity, axial distance
and time (see the notation below equation (2.2)).

The above analytical treatment of the two-way coupling between the velocity fields
of the two phases (i.e. particles or droplets and the host gas) was first presented by
Saffman (1962) and Marble (1963), and was also employed in more recent studies,
e.g. Tambour & Zehavi (1993), Miller & Bellan (1999) and Varanasi, Clack & Miller
(2004), in which the two-way coupling between the phases was fully incorporated, in
a two-dimensional simulation.
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The radial velocity component v equals zero across the inlet section. Hence, at
the first stage that lies close to the tube inlet, the radial velocity component still
remains negligible relative to the axial velocity component. Under this assumption
the equations of motion (5.1) and (5.2) may be expressed in the following form,
respectively: host-gas flow

u
du

dx
= −dp

dx
+

1

r

∂

∂r

(
r
∂u

∂r

)
+ Kε(ud − u), (5.3)

droplets

ud

dud

dx
= K(u − ud). (5.4)

Solutions are derived here for low droplet concentrations, i.e. ε � 1. For such a
case, the velocity u and velocity ud may be expanded as

u = u0 + εu1 + ε2u2 + . . . , (5.5)

ud = ud,o + εud,1 + ε2ud,2 + . . . (5.6)

Substituting (5.5) and (5.6) into (5.3) and (5.4) and comparing the terms free of ε ,
we obtain the following set of equations for the zeroth order of the solution:

u0

du0

dx
= −dp

dx
+

1

r

∂

∂r

(
r
∂u0

∂r

)
, (5.7)

ud,0

dud,0

dx
= K(u0 − ud,0). (5.8)

The corresponding initial and boundary conditions are

u0(x = 0, r) = 1, (5.9)

u0(x > 0, r = 1) = 0, (5.10)∫ 1

0

ru0dr =
1

2
, (5.11)

ud,0(x = 0, r) = ud(0). (5.12)

In order to solve (5.7) we apply our modified linearization (2.8) to (5.7):

u0

du0

dt
= γ 2(u0 − ubound) (5.13)

and we obtain

u0 =
I0(γ ) − I0(γ r)

I2(γ )
. (5.14)

Next, we divide (5.8) by (5.13) and obtain

ud,0

dud,0

dγ
= K

u0 − ud,0

γ 2(u0 − ubound)

du0

dγ
u0 (5.15)

with initial condition (5.12).
One can see now that if Langhaar’s classical linearization (i.e. in the absence of

the term ubound) is used in (5.13) and (5.15), then the sign of the derivative dud,0/dγ

depends on the sign of the derivative du0/dγ . But in reality, the sign of the derivative
dud,0/dγ depends on the sign of the relative velocity (u0−ud,0) only. This contradiction
is resolved by applying our modified linearization that includes the boundary velocity
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Figure 9. Droplet velocities in a developing tube flow. No evaporation. (a) Accelerating flow
(r/a = 0.2) and accelerating droplets. (b) Accelerating flow (r/a = 0.2) and initially decelerating
droplets. (c) Accelerating and then decelerating flow (r/a = 0.65) and accelerating droplets.
(d) Accelerating and then decelerating flow (r/a = 0.61) and initially decelerating droplets.

ubound (see (2.8) and (5.13)), because here the terms (u0 − ubound) and du0/dγ have the
same sign as follows from the definition of the velocity ubound , see (2.17).

Equation (5.15) is an ordinary nonlinear differential equation and is integrated
here numerically satisfying the initial condition given by (5.12). The results of our
calculations are presented in figure 9.

Near the entrance, in the early entry region, i.e. for γ � 1, equation (5.14) reduces
to

u0 ≈ 1 +
2

γ
, (5.16)

and from the definition of ubound one can show that (see (2.17))

ubound ≈ 1 +
5/3

γ
. (5.17)

Thus, near the entrance, equation (5.15) may also be solved analytically to yield

ud,0 =

{
1 + 4K/γ 3 if ud(0) = 1

1 − [1 − ud(0)]exp(−3K/γ 2) if ud(0) 	= 1
(5.18)
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As one can see from the above consideration and calculated results for the flow
and droplet motion (figure 9), the velocity of droplets approaches the velocity of the
main flow in a relatively short distance. This means that, after a short first stage, the
velocity of the droplets is close to the flow velocity, and thus in the second stage the
following relation may be used:

ud ≈ u. (5.19)

Consider now the second stage of droplet motion. Taking into account relation
(5.19) and following Saffman’s method (Saffman 1962) we rewrite (5.1) and (5.2) in
the following form, respectively:

Du

Dt
= −dp

dx
+

1

r

∂

∂r

(
r
∂u

∂r

)
+ Kε(ud − u) (5.20)

and

Du

Dt
≈ Dud

Dt
= K(u − ud). (5.21)

Combining (5.20) and (5.21) we can eliminate the droplet velocity ud and obtain
the equation of fluid motion as follows:

(1 + ε)
Du

Dt
= −dp

dx
+

1

r

∂

∂r

(
r
∂u

∂r

)
. (5.22)

Equation (5.22) can now be linearized in perfect analogy with our previous
linearization (see (2.8)), i.e.

(1 + ε)
Du

Dt
= γ 2(u − ubound), (5.23)

whose solution for the case of an initially uniform velocity distribution is identical to
(2.7):

u =
I0(γ ) − I0(γ r)

I2(γ )
. (5.24)

Then the function γ is determined from the momentum equation (5.22) evaluated
at the centreline and from a momentum integral equation.

As shown earlier, the first stage of droplet motion is much shorter than the second
one. Hence, the relationship between the axial position x and the function γ may be
rewritten for the whole region as follows:

x = (1 + ε)

∫ γ

∞
h(γ )dγ (5.25)

where the function h(γ ) is determined similarly to (4.1) as

h(γ ) =

d

dγ

(
2

∫ 1

0

ru2dr − u2
c

2

)

2

(
∂u

∂r

)
r=1

−
[
1

r

∂

∂r

(
r
∂u

∂r

)]
r=0

. (5.26)

Equation (5.25) indicates that in the presence of droplets the development of the
flow is decelerated by the factor (1 + ε).
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The velocity of droplets ud in the second stage may be obtained by comparison of
(5.21) and (5.23), leading to the relation

ud = u − γ 2(u − ubound)

(1 + ε)K
. (5.27)

Both previously considered stages of droplet motion have a matching value for γ ,
for which the velocities of droplets at each stage are equal at the transition point.
If the droplet drag coefficient K is large, then (5.18) may be used to calculate the
droplet velocity in the first stage. For example, let the following values of parameters
be specified:

ud(0) = 1; ε = 0.35; K = 60. (5.28)

By using (5.16)–(5.18) and (5.27) we obtain the matching value γtransition to be

γtransition ≈ 9.5. (5.29)

This means that for the conditions chosen in the above example, the matching point
lies very close to the inlet (see figure 7).

6. Evaporating droplets suspended in a developing initially uniform flow
Next, we consider the changes in the value of the droplet drag coefficient due to

the decrease in droplet diameter as a result of droplet evaporation. According to the
d2 -law of evaporation:

d(d2)

dt
= −E (6.1)

where E is the evaporation coefficient.
Taking into account the relationship between the droplet diameter d and the drag

coefficient K

d2 =
18a2

ρ

1

K
(6.2)

and substituting the above equation into (6.1), we obtain

d(1/K)

dt
= − Eρ

18a2
. (6.3)

Replacing dt by dx/ud,0, then replacing dx by ((dx/dγ )dγ ) and accordingly
transforming equation (6.3), we obtain

d(1/K)

dγ
= − Eρ

18a2

1

ud,0

dx

dγ
. (6.4)

Equation (6.4) may now be added to equation (5.15) and solved numerically.
Next, we treat the case of γ � 1. We solve (6.4) for ud,0 = 1 and γ � 1. Employing

(4.1) in which we use γ � 1, we obtain

dx

dγ
≈ − 1

2γ 3
. (6.5)

Substituting (6.5) into (6.4) and solving the resulting equation, we obtain an
expression for the drag coefficient K as a function of its initial value K0,

K ≈ K0

(
1 +

K0Eρ

18a2

1

4γ 2

)
. (6.6)
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Using equations (5.16), (5.17) and (6.6) in (5.15), we obtain the development of the
droplets velocity in the early region, in which evaporation of droplets is accounted
for,

ud,0 = 1 +
4K0

γ 3
+

6K0

γ 4
+

3K2
0

5γ 5

(
Eρ

18a2
− 8

)
(6.7)

under the initial condition ud(0) = 1.
As was mentioned earlier, after a short initial stage, the velocities of non-evaporating

droplets become close to the host-flow velocity. In the case of evaporating droplets, the
droplets moving with the flow become smaller and then disappear releasing vapour
which propagates in the tube due to diffusion and convection. Our purpose now is
to determine the concentrations of the evaporating droplets and the production of
vapour in the tube. The non-dimensional governing equations of motion obtained
according to the d2-law of evaporation (see Tambour 1984, 1985; Katoshevski &
Tambour 1993) are
for the evaporating droplets

u
∂md

∂x
+ v

∂md

∂r
= −Ēm

1/3
d , (6.8)

and for the vapour

u
∂m

∂x
+ v

∂m

∂r
=

D

r

∂

∂r

(
r
∂m

∂r

)
+ Ēm

1/3
d , (6.9)

where md = (d/d0)
3 is the mass of a droplet, related to its initial mass, md(0) = 1

6
πρdd

3
0

is the initial droplet mass, d0 is the initial droplet diameter, d is the instantaneous
droplet diameter, m = mvapor/md(0) is mass of produced vapour, related to the initial
droplet mass, D is diffusion coefficient, and Ē = 3Ea2/(2πd2

0ν) is non-dimensional
evaporation coefficient.

It is difficult to treat equations (6.8) and (6.9) analytically because some droplets
vanish due to the evaporation process at different points in a tube depending on their
trajectories, and we cannot allow a negative droplet mass.

Because of this, equations (6.8) and (6.9) were solved numerically, for different values
of the evaporation coefficient Ē. Velocities u and v were calculated by employing
equations (5.24) and (4.9), respectively.

The boundary conditions are determined by symmetry

∂m

∂r

∣∣∣∣
r=0

= 0 (6.10)

and by the non-permeability condition at the tube wall

∂m

∂r

∣∣∣∣
r=1

= 0. (6.11)

Initial conditions are determined by the uniform distribution of droplets in the duct
inlet section

md(x = 0, r) = 1 (6.12)

and by the absence of vapour in this section

md(x = 0, r) = 0. (6.13)

The results of our calculations were checked by the mass balance relation which
was obtained after integrating equations (6.8) and (6.9) over the tube cross-section,



Developing flow with droplets in a tube 265

with the use of the boundary conditions (6.10) and (6.11):

d

dx

∫ 1

0

(md + m)urdr = 0. (6.14)

Concentration profiles of the droplet phase and the vapour phase are shown below
in figures 11 and 12, respectively.

7. Results and discussion of the droplet flow field
A schematic description of the problem is presented in figure 1. We treat here:

(i) flows developing from spatially periodic initial velocity distributions without the
presence of droplets, see figure 1(a), (already presented and discussed in §4), and
(ii) two-phase flows in which monosize, nonevaporating and evaporating droplets
suspended in a developing gas flow of an initially uniform velocity distribution
exchange momentum with the host-gas flow, see figure 1(b) discussed below.

The behaviour of droplets suspended in a duct flow developing from an initially
uniform velocity profile is presented in figure 9. One can see a few ‘modes’ of the
relative motion of the droplets and the flow. Figures 9(a) and 9(b) show the relative
motion of the droplets and the flow in the region of an accelerating flow. We have
chosen two radial locations, one at the central ‘inner’ region (0 � r < 0.58) presented
in figures 9(a) and 9(b), and the other within the ‘outer’ region 0.58 � r < 1 in
figures 9(c) and 9(d). Note that there is a fundamental difference between these two
regions in the host-gas flow behaviour. In the inner region, the flow accelerates,
whereas in the outer region, the flow accelerates initially and then decelerates (see
figure 9).

Two particular cases are presented here: one for an initial droplet velocity which is
lower than the initial host-gas velocity, and the second for an initial droplet velocity
which is higher than the initial host-gas velocity. The motion of droplets which start
with initial velocity ud,0 lower than the initial gas velocity (ud,0 < 1) is presented in
figure 9(a). One can see that all droplets are gradually accelerated and their velocities
eventually approach the fluid velocity. Smaller droplets with higher drag coefficients
(higher values of K) are subject to a larger acceleration and their velocity reaches
the flow velocity faster (i.e. in a shorter distance). When the initial droplet velocity is
higher than the initial flow velocity (ud,0 > 1) (see figure 9b), the droplets decelerate
up to the moment at which their velocity reaches the velocity of the flow. Then they
start to accelerate but lag behind the velocity of the host gas. Note that as expected
the smaller droplets approach the flow velocity faster.

The behaviour of droplets in the outer region of the tube is presented in figures
9(c), 9(d). This is the region between r ≈ 0.58 and the wall, r = 1 (for an exact
definition, see figure 3). In this region, the flow velocity increases initially and then
begins to decrease, because (at a certain axial position) the boundary layer reaches
this position and makes the flow decelerate.

When the initial droplet velocity is smaller than the flow velocity (ud,0 < 1), the
large droplets (of a low drag coefficient) are accelerated slowly and their velocity
finally approaches the flow velocity (see figure 9c, K = 20). The velocity of small
droplets reaches the flow velocity and even exceeds its value when the host-gas velocity
decelerates. Then eventually the droplet velocity approaches the flow velocity from
above.

The motion of droplets with high initial velocities (ud,0 > 1) (see figure 9d) may be
described as a combination of the two last cases (figures 9b and 9c). Here there is
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Figure 10. Droplet velocities in a developing tube flow. Evaporation is present. Accelerating
flow (r/a = 0.1) and accelerating droplets. The rate of evaporation is determined by E, see
equation (6.1).

initially an interaction between a slow flow and fast droplets and followed by a fast
flow which accelerates slow droplets.

Note that when evaporation is present, droplets become smaller and thus the drag
coefficient increases. Hence the behaviour of evaporating droplets will be transitional,
i.e. it will shift from the behaviour of large droplets to the behaviour of smaller
droplets (see figure 10).

Figure 11 shows the mass distribution of droplets which was calculated from
equation (6.8), for different values of non-dimensional evaporation coefficient Ē.
The total mass of the droplets over each cross-section of the tube decreases with
increasing downstream distance. The region where the droplets may be found also
decreases. Enhancement of Ē accelerates these processes, but the differences between
the amounts of liquid phase for various evaporation rates become significant only
far from the tube inlet (see for comparison figures 11a, 11b and 11c). Another effect
is that in the central core of the tube, the distribution of the liquid phase is nearly
uniform, and a severe decrease in the droplet concentration is observed near the edge
of the zone where the droplets exist, due to the longer residence time of the droplets.

Dispersion of vapour produced by evaporation of moving droplets is shown in figure
12, for various levels of evaporation rate Ē. Initially the more intensive evaporation
process is observed near the tube wall, where the droplet velocity is small and the
residence time of the droplets in this zone is large. When the droplets move further
downstream, the process of diffusion leads to equalization of vapour concentration.
However, the zone of intensive evaporation shifts toward the tube centreline, because
the droplets near the wall vaporize completely (see figure 11). As a result, one can see
a peak of vapour concentration far from the tube wall (see line x = 0.122 in figure 12a
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Figure 11. Lateral and axial evolution of mass concentration of the liquid phase (evaporating
droplets) across the tube for various evaporation rates; Ē is the normalized evaporation
coefficient. (a) Ē = 10, (b) Ē = 20, (c) Ē = 50.

and line x = 0.042 in figure 12b). The enhancement of evaporation rate leads to faster
complete evaporation of droplets and hence the pure vapour phase is obtained at
a shorter downstream distance from the duct inlet. This vapour is exposed to mass
transfer due to dispersion, i.e. the simultaneous influence of diffusion and flow. The
dispersion leads to equalization of vapour concentration over the cross-section of
the tube, and finally this concentration becomes uniform (at the end of the entrance
region, see lines x = 0.122 and x = 0.226 in figures 12b and 12c).

8. Concluding remarks
In conclusion, a new approach has been presented for the analysis of developing

non-uniform spatially periodic flows in the entrance region of ducts. The theoretical
predictions of the evolution of spatially periodic velocity profiles have been validated
by numerical calculations. This provides strong support for the physical underpinnings
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Figure 12. Effect of various rates of evaporation on vapour distribution across and along
the tube. (a) Ē = 10, (b) Ē = 20, (c) Ē = 50.

of the present modified linearization procedure. Thus, it is possible to extend the
present solution to a variety of flows in which the initial velocity distribution may be
regarded as consisting of periodic spatial distributions having different characteristic
frequencies. For an initially uniform developing flow, the present modified linearization
enables us to treat here the dynamics of non-evaporating and evaporating droplets.
Asymptotic solutions have been presented for the flow region which lies very close
to the inlet of the tube in which the relative velocity between the droplets and
the host gas is high, and thus the velocity fields of the two phases are mutually
coupled. These solutions provide new explicit formulae for the droplet velocity field
as a function of the initial conditions and droplet diameter (relative to the tube
diameter) for non-evaporating drops (equations (5.18), (5.27)), and also a function
of evaporation rate (equation (6.7)) for evaporating drops. Thus, for a given duct
flow and known vaporization rates, one can determine the desired size of droplets so
that drop velocities would reach the host-gas velocity within desired distances of the
entrance region.
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